Editor’s Highlight: Screening ToxCast Prioritized Chemicals for PPARG Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis

نویسندگان

  • Briana Foley
  • Daniel L. Doheny
  • Michael B. Black
  • Salil N. Pendse
  • Barbara A. Wetmore
  • Rebecca A. Clewell
  • Melvin E. Andersen
  • Chad Deisenroth
چکیده

The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the fetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the human relevance of these findings is unclear. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) is the master regulator of adipogenesis. Human adipose-derived stem cells (hASC) isolated from adipose tissue express endogenous isoforms of PPARG and represent a biologically relevant cell-type for evaluating activity of PPARG ligands. Here, a multi-endpoint approach based on a phenotypic adipogenesis assay was applied to screen a set of 60 chemical compounds identified in ToxCast Phase I as PPARG active (49) or inactive (11). Chemicals showing activity in the adipogenesis screen were further evaluated in a series of 4 orthogonal assays representing 7 different key events in PPARG-dependent adipogenesis, including gene transcription, protein expression, and adipokine secretion. An siRNA screen was also used to evaluate PPARG-dependence of the adipogenesis phenotype. A universal concentration-response design enabled inter-assay comparability and implementation of a weight-of-evidence approach for bioactivity classification. Collectively, a total of 14/49 (29%) prioritized chemicals were identified with moderate-to-strong activity for human adipogenesis. These results provide the first integrated screening approach of prioritized ToxCast chemicals in a human stem cell model of adipogenesis and provide insight into the capacity of PPARG-activating chemicals to modulate early life programming of adipose tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Utility of ToxCast™ and ToxPi as Methods for Identifying New Obesogens

BACKGROUND In ToxCast™ Phase I, the U.S. EPA commissioned screening of 320 pesticides, herbicides, fungicides, and other chemicals in a series of high-throughput assays. The agency also developed a toxicological prioritization tool, ToxPi, to facilitate using ToxCast™ assays to predict biological function. OBJECTIVES We asked whether top-scoring PPARγ activators identified in ToxCast™ Phase I...

متن کامل

Evaluating the effect of arachidonic acid and eicosapentaenoic acid on induction of adipogenesis in human adipose-derived stem cells

Objective(s): Adipose tissue is one of the most important endocrine organs that liberates many metabolic mediators such as hormones, cytokines, and chemokines. Different types of fatty acids have key roles in adipogenesis. The aim of this study was to evaluate the effects of two essential fatty acids, including Arachidonic acid (AA) and Eicosapentaenoic acid (EPA), on ...

متن کامل

Vitamin E and Selenium Facilitate the Osteogenesis and Adipogenesis of the Human Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells

Background and Aims: Previous studies have shown that adipose-derived mesenchymal stem/ stromal cells are one of the sources of mesenchymal stem cells (MSCs) with the capacity to differentiate into various mesodermal cell lineages. MSCs with cytokines secretion capability, which contributes to repair damaged tissues have gained wide credence for future cell-based therapeutic applications. In th...

متن کامل

The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research

The tropical freshwater zebrafish has recently emerged as a valuable model organism for the study of adipose tissue biology and obesity-related disease. The strengths of the zebrafish model system are its wealth of genetic mutants, transgenic tools, and amenability to high-resolution imaging of cell dynamics within live animals. However, zebrafish adipose research is at a nascent stage and many...

متن کامل

The effects of cinnamaldehyde and eugenol on human adipose-derived mesenchymal stem cells viability, growth and differentiation: a cheminformatics and in vitro study

Objective: The aim of this study was to estimate the cheminformatics and qualitative structure-activity relationship (QSAR) of cinnamaldehyde and eugenol. The effects of cinnamaldehyde and eugenol on the viability, doubling time and adipogenic or osteogenic differentiations of human adipose-derived mesenchymal stem cells (hASCs) were also investigated.  Materials and Methods: QSAR and toxicity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2017